Explorative Analysis of Wuhan Intra-Urban Human Mobility Using Social Media Check-In Data
نویسندگان
چکیده
Social media check-in data as a geo-tagged information source have been used for revealing spatio-temporal patterns in the field of social and urban study, such as human behavior or public issues. This paper investigates a case study and presents a new method of representing the mobility of people within a city from check-in data. By dividing the data in a temporal sequence, this study examines the overall mobility in the case study city through the gradient/difference of population density with a series of time after computing the population density from the check-in data using an incorporated Thiessen polygon method. By classifying check-in data with their geo-tags into several groups according to travel purposes, and partitioning the data according to administrative district boundaries, various moving patterns for those travel purposes in those administrative districts are identified by scrutinizing a series of spatial geometries of a weighted standard deviational ellipse (WSDE). Through deep analyses of those data by the adopted approaches, the general pattern of mobility in the case city, such as people moving to the central urban area from the suburb from 4 am to 8 am, is ascertained, and different characteristics of movement in those districts are also depicted. Furthermore, it can tell that in which district less movement is likely for a certain purpose (e.g., for dinner or entertainment). This study has demonstrated the availability of the proposed methodology and check-in data for investigating intra-urban human mobility.
منابع مشابه
Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data
Most existing human mobility literature focuses on exterior characteristics of movements but neglects activities, the driving force that underlies human movements. In this research, we combine activity-based analysis with a movement-based approach to model the intra-urban human mobility observed from about 15 million check-in records during a yearlong period in Shanghai, China. The proposed mod...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملInvestigating "Locality" of Intra-Urban Spatial Interactions in New York City Using Foursquare Data
Thanks to the increasing popularity of location-based social networks, a large amount of user-generated geo-referenced check-in data is now available, and such check-in data is becoming a new data source in the study of mobility and travel. Conventionally, spatial interactions between places were measured based on the trips made between them. This paper empirically investigates the use of socia...
متن کاملExploring the distribution and dynamics of functional regions using mobile phone data and social media data
How different functional regions in urban space are distributed and dynamically changing is determined by how their residents interact with them, which is crucial for urban managers to make urban planning decisions, respond to emergency quickly. Based on these, this paper proposed a novel approach for the probability based labelling individual activities which can be further used to explore the...
متن کاملFrom Social Sensor Data to Collective Human Behaviour Patterns – Analysing and Visualising Spatio-Temporal Dynamics in Urban Environments
The digital traces that people continuously leave behind – voluntarily or not – while using communication devices such as mobile phones or interacting with social media platforms reflect their behaviour in great detail. In this paper we show examples of the spatiotemporal patterns of collective human dynamics, which we derived from ‘social sensor’ data. We used user-generated data in mobile net...
متن کامل